FINAL: ALGEBRAIC GEOMETRY

Date: 28th April 2015

The Total points is **110** and the maximum you can score is **100** points.

A ring would mean a commutative ring with identity.

- (1) (10 points) Let X be an affine algebraic set. Show that X is connected iff the only idempotents in its coordinate ring are 0 and 1.
- (2) (5+15=20 points) Define reduced scheme. Let X be a reduced noetherian affine scheme. Show that there exist at least one and at most finitely points x_1, \ldots, x_n in X such that the stalk(s) \mathcal{O}_{X,x_i} are fields.
- (3) (20 points) Let X be a scheme. Prove or Disprove
 - (a) X, \mathcal{O}_X is reduced iff there exist an affine open cover $\{U_i\}$ of X such that $(U_i, \mathcal{O}_X|_{U_i})$ is reduced for all *i*.
 - (b) X, \mathcal{O}_X is irreducible iff there exist an affine open cover $\{U_i\}$ of X such that $(U_i, \mathcal{O}_X|_{U_i})$ is irreducible for all *i*.
- (4) (5+15=20 points) When is a morphism of schemes called separated? Let Y be a separated Z-scheme. Then for any Y-scheme X_1, X_2 , show that the canonical morphism $X_1 \times_Y X_2 \to X_1 \times_Z X_2$ is a closed immersion.
- (5) (5+15=20 points) Let X be a k-scheme and $x \in X$ be a point. When is x called a nonsingular point of X? Let $f: X \to Y$ be a birational proper k-morphism of integral k-curves. Let U be an open subset of Y such that every point of U is nonsingular and $V = f^{-1}(U)$. Show that $f|_V$ is an isomorphism.
- (6) (20 points) Let X be the projective plane curve over a field k given by the irreducible homogeneous polynomial $zy^2 x^3$. Show that the normalization of X is isomorphic to \mathbb{P}^1 .